
Complex Impedance
\ddot{y} The Impedance Z of a circuit is the ratio of phasor voltage V to the phasor current I (Ohm's Law) .which is usually represented by complex number.

$$
Z=\frac{\mathbf{V}}{\mathbf{I}} \quad \text { or } \quad \mathbf{V}=\mathbf{Z} \mathbf{I} \quad \text { (Ofm's Law) }
$$

\ddot{y} This Impedance Z is usually a complex number and not a sine wave.

$$
\begin{aligned}
& \text { Complex Impedance } \\
& \text { in case of Resistace } Z_{\mathcal{R}}
\end{aligned}
$$

\ddot{y} In the Resistance circuit, the phasor current I is in phase with phasor voltage V.

$$
\mathbf{V}=\mathrm{V} \angle \theta_{\mathrm{V}} \quad \mathbf{I}=\mathrm{I} \angle \theta_{\mathrm{V}} \quad \text { (current in phase with voltage) }
$$

Appling Ofm's law:

$$
\mathrm{Z}_{\mathrm{R}}=\frac{\mathrm{V} \angle \theta_{\mathrm{v}}}{\mathrm{I} \angle \theta_{\mathrm{v}}}=\frac{\mathrm{V}}{\mathrm{I}} \angle 0^{\circ}
$$

$$
\begin{gathered}
\text { Complex Impedance } \\
\text { in case of Inductive reactance } Z_{\perp}
\end{gathered}
$$

\ddot{y} In the Inductance circuit, the phasor current I is LAGs voltage V by 90°.
$\mathrm{V}=\mathrm{V} \angle \theta_{\mathrm{V}} \mathrm{I}=\mathrm{I} \angle\left(\theta_{\mathrm{v}}-90\right)$ (current lags voltage by 90°)
Appling Oft's law:

$$
\begin{aligned}
\mathbf{Z}_{\mathrm{L}} & =\frac{\mathrm{V} \angle \theta_{\mathrm{v}}}{\mathrm{I} \angle\left(\theta_{\mathrm{v}}-90\right)} \\
& =\frac{\mathrm{V}}{\mathrm{I}} \angle 90^{\circ} \\
\mathbf{Z}_{\mathrm{L}} & =\mathrm{X}_{\mathrm{L}} \angle 90^{\circ}=\mathrm{j} \mathrm{X}_{\mathrm{L}}
\end{aligned}
$$

$$
\begin{gathered}
\text { Complex Impedance } \\
\text { in case of Capacitive reactance } Z_{c}
\end{gathered}
$$

\ddot{y} In the Capacitive circuit, the phasor current I is LEADs voltage V by 90°.

$$
\mathrm{V}=\mathrm{V} \angle \theta_{\mathrm{v}} \mathrm{I}=\mathrm{I} \angle\left(\theta_{\mathrm{v}}+90\right) \text { (current leads voltage by } 90^{\circ} \text {) }
$$

Appling Ofn's law:

$$
\begin{aligned}
\mathbf{Z}_{\mathrm{C}} & =\frac{\mathrm{V} \angle \theta_{\mathrm{v}}}{\mathrm{I} \angle\left(\theta_{\mathrm{V}}+90\right)} \\
& =\frac{\mathrm{V}}{\mathrm{I}} \angle-90^{\circ}
\end{aligned}
$$

$$
\mathbf{Z}_{\mathrm{C}}=\mathrm{X}_{\mathrm{C}} \angle-90^{\circ}=-\mathrm{j} \mathrm{X}_{\mathrm{C}}
$$

Impedance of Ioint Elements
$\ddot{y} \quad$ The Impedance Z represents the opposition of the circuit to the flow of sinusoidal current.

$$
\begin{aligned}
& Z=\frac{V}{I}=R+j X= \\
& \\
& =\text { Resistance }+\mathrm{j} \times \text { Reactance } \\
& \\
& =|\mathrm{Z}| \angle \theta \\
& |Z|=\sqrt{R^{2}+X^{2}} \quad \theta=\tan ^{-1} \frac{X}{R} \\
& R=|Z| \cos \theta \quad X=|Z| \sin \theta
\end{aligned}
$$

\ddot{y} The Reactance is Inductive if X is positive and it is Capacitive if X is negative.

ÿ The Kirchoff"s Voltage Law (KVL) holds in the frequency domain. For series connected impedances:

Current is Constant

$$
\begin{aligned}
& \mathbf{V}=\mathbf{V}_{1}+\mathbf{V}_{2}+\cdots+\mathbf{V}_{N}=\mathbf{I}\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}+\cdots+\mathbf{Z}_{N}\right) \\
& \mathbf{Z}_{\mathrm{eq}}=\frac{\mathbf{V}}{\mathbf{I}}=\mathbf{Z}_{1}+\mathbf{Z}_{2}+\cdots+\mathbf{Z}_{N} \quad \text { (Equivalent Impedance) }
\end{aligned}
$$

Voltage Divider rule

y \quad The Voltage Division for two elements in series is:

$$
\mathbf{I}=\frac{\mathbf{V}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}}
$$

Since $\mathbf{V}_{1}=\mathbf{Z}_{1} \mathbf{I}$ and $\mathbf{V}_{2}=\mathbf{Z}_{2} \mathbf{I}$, then

$$
\begin{aligned}
& V_{1}=\frac{Z_{1}}{Z_{1}+Z_{2}} V \\
& V_{2}=\frac{Z_{2}}{Z_{1}+Z_{2}} V
\end{aligned}
$$

Admittance of Ioint Elements

$\ddot{y} \quad$ The Admittance Y represents the admittance of the circuit to the flow of sinusoidal current. The admittance is measured in Siemens (s)

$$
\begin{aligned}
Y= & \frac{1}{Z}=\frac{I}{V}=G+j B \\
= & \text { Conductance }+\mathrm{j} \text { Suseptance }=|\mathrm{Y}| \angle \theta \\
& Y=G+j B=\frac{1}{R+j X} \frac{R-j X}{R-j X}=\frac{R-j X}{R^{2}+X^{2}} \\
& G=\frac{R}{R^{2}+X^{2}} \quad B=-\frac{X}{R^{2}+X^{2}}
\end{aligned}
$$

Ex.5: consider the circuit,
(a) Calculate the sinusoidal voltages v_{1} and v_{2} using phasors and voltage divider rule
(b) Sketch the phasor diagram showing E, V_{1} and V_{2}.

Solution

$$
\begin{array}{ll}
\text { (a) the sinusoidal voltages v1 and v2 using phasors } & V_{1}=\frac{Z_{1}}{Z_{1}+Z_{2}} V \\
V_{1}=\left(\frac{40-j 80}{(40-j 80)+(30+j 40)}\right)\left(70.71 \angle 0^{\circ}\right)=78.4 \angle-33.69^{\circ} V & V_{2}=\frac{Z_{2}}{Z_{1}+Z_{2}} V
\end{array}
$$

$$
V_{2}=\left(\frac{30+j 40}{(40-j 80)+(30+j 40)}\right)\left(70.71 \angle 0^{\circ}\right)=43.9 \angle 82.87^{o} V
$$

(6) Phasor diagram

ÿ The Kirchoff"s Current Law (KCL) holds in the frequency domain. For Parallel connected impedances:

Current Divider rule

ÿ The Current Division for two elements is:

$$
\begin{gathered}
\mathbf{Z}_{\mathrm{eq}}=\frac{1}{\mathbf{Y}_{\mathrm{eq}}}=\frac{1}{\mathbf{Y}_{1}+\mathbf{Y}_{2}}=\frac{1}{1 / \mathbf{Z}_{1}+1 / \mathbf{Z}_{2}}=\frac{\mathbf{Z}_{1} \mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \\
\mathbf{V}=\mathbf{I} \mathbf{Z}_{\mathrm{eq}}=\mathbf{I}_{1} \mathbf{Z}_{1}=\mathbf{I}_{2} \mathbf{Z}_{2} \\
I_{1}=\frac{Z_{2}}{Z_{1}+Z_{2}} I \quad I_{2}=\frac{Z_{1}}{Z_{1}+Z_{2}} I
\end{gathered}
$$

$\ddot{y} \quad$ The Current Division for more elements is:

Ex. 6: Refer to the circuit;

(a) Find the total impedance, Z_{T}.
(b) Determine the supply current, I_{T}.
(c) Calculate \mathbf{I}_{1}, I_{2}, using current divider rule. (d) Verify Kirchhoff's current law at node a.

$$
\begin{array}{lll}
\text { a. } & \frac{1}{Z_{T}}=\frac{1}{20}+\frac{1}{j 1}+\frac{1}{-j 1}=\frac{1}{20} \quad Z_{T}=20 \angle 0^{\circ} k \Omega & Z_{R}=20 \angle 0^{\circ} k \Omega \\
\text { b. } & I_{T}=\frac{V}{Z_{T}}=\frac{5 \angle 0}{20 x 10^{3} \angle 0}=250 \times 10^{-6} \angle 0^{\circ} A=250 \angle 0^{\circ} \mu A & Z_{L}=1 \angle 90^{\circ} k \Omega \\
Z_{C}=1 \angle-90^{\circ} k \Omega \\
\text { c. } & I_{1}=\frac{20 \angle 0}{20 \angle 0} x 250 \angle 0^{\circ}=250 \angle 0^{\circ} \mu A & \\
& I_{2}=\frac{20 \angle 0}{1 \angle 90} x 250 \angle 0^{\circ}=5000 \angle-90^{\circ} \mu A \\
& I_{3}=\frac{20 \angle 0}{1 \angle-90} x 250 \angle 0^{\circ}=5000 \angle 90^{\circ} \mu A \\
\text { d. } \mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}=250 \angle 0+5000 \angle-90+5000 \angle 90=250 \angle 0^{\circ} \mu A
\end{array}
$$

$\mathcal{Y}-\boldsymbol{\Delta}$ and $\boldsymbol{\Delta}$ - \mathcal{Y} Equivalent Circuits

$>\mathrm{Y}-\Delta$ and $\Delta-\mathrm{Y}$ type equivalent conversions will be most useful when considering Three Phase circuits.
$>$ Impedance Z_{1}, Z_{2} and Z_{3} are Y connected.
$>$ Impedances Z_{a}, Z_{b} and Z_{c} are Δ connected.
$>\mathrm{Y}$ and Δ forms can be equivalently converted from one form to the other.
$>\mathrm{Y}-\Delta$ and $\Delta-\mathrm{Y}$ conversions are valid for impedance as well as resistive circuits.
$>\mathrm{Y}-\Delta$ and $\Delta-\mathrm{Y}$ type equivalent conversions will be most useful when considering Three Phase circuits.

Y. Δ and Δ - \mathcal{Y} Equivalent Circuits

ÿ $\mathrm{Y}-\Delta$ and $\Delta-\mathrm{Y}$ type equivalent conversions will be useful when considering Three Phase circuits.

$$
\begin{aligned}
& \mathrm{Y}-\Delta \text { Conversion } \\
& Z_{a}=\frac{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}{Z_{1}} \\
& Z_{b}=\frac{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}{Z_{2}} \\
& Z_{c}=\frac{Z_{1} Z_{2}+Z_{2} Z_{3}+Z_{3} Z_{1}}{Z_{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta-Y \text { Conversion } \\
& Z_{1}=\frac{Z_{b} Z_{c}}{Z_{a}+Z_{b}+Z_{c}} \\
& Z_{2}=\frac{Z_{a} Z_{c}}{Z_{a}+Z_{b}+Z_{c}} \\
& Z_{3}=\frac{Z_{a} Z_{b}}{Z_{a}+Z_{b}+Z_{c}^{59}}
\end{aligned}
$$

ÿ A delta (Δ) or \mathbf{Y} (wye) circuit is balanced if it has equal impedances in all three branches.
$\ddot{\mathrm{y}} \mathrm{Y}-\Delta$ and $\Delta-\mathrm{Y}$ conversions is very simple for balanced circuits.

$$
\begin{array}{|l|}
\hline \text { Balanced Impedance Conversions: } \\
Z_{Y}=Z_{1}=Z_{2}=Z_{3} \\
Z_{\Delta}=Z_{a}=Z_{b}=Z_{c} \\
\hline
\end{array}
$$

$$
\mathrm{Z}_{\Delta}=3 Z_{Y} \quad \mathrm{Z}_{Y}=\frac{1}{3} \mathrm{Z}_{\Delta}
$$

Ex. 7: Find the current I in the circuit.

Solution

$$
\begin{aligned}
Z_{a n} & =\frac{j 4(2-j 4)}{j 4+2-j 4+8}=\frac{16+j 8}{10}=1.6+j 0.8 \Omega \\
Z_{b n} & =\frac{j 4(8)}{10}=j 3.2 \Omega \quad Z_{c n}=\frac{8(2-j 4)}{10}=1.6-j 3.2 \Omega
\end{aligned}
$$

Ex. 7: Find the current I in the circuit.

$$
\begin{gathered}
\mathrm{Z}_{1}=\mathrm{Z}_{\mathrm{an}}+12=13.6+\mathrm{j} 0.8 \quad \mathrm{Z}_{2}=\mathrm{Z}_{\mathrm{bn}}-\mathrm{j} 3=\mathrm{j} 0.2 \\
\mathrm{Z}_{3}=\mathrm{Z}_{\mathrm{cn}}+\mathrm{j} 6+8=9.6+\mathrm{j} 2.8 \\
Z_{T}=Z_{1}+\frac{Z_{2} Z_{3}}{Z_{2}+Z_{3}}=13.6+j 0.8+\frac{j 0.2(9.6+j 2.8)}{9.6+j 3}=13.6+j 1 \Omega
\end{gathered}
$$

The source current $\quad I=\frac{V}{Z_{T}}=\frac{50 \angle 0}{13.6+j 1}=3.666 \angle-4.2^{\circ} \Omega$

$\ddot{y} \quad$ The AC bridge is Balanced when no current flows through the meter. AC bridges are used in measuring inductance and capacitance values.

At balance case: $I_{\text {meter }}=0$

$$
\begin{gathered}
\mathbf{V}_{\mathbf{1}}=\mathbf{V}_{2} \\
\mathbf{v}_{\mathbf{1}}=\frac{Z_{2}}{Z_{1}+Z_{2}} \mathbf{v}_{\mathbf{s}}=\mathbf{v}_{2}=\frac{Z_{x}}{Z_{3}+Z_{x}} \mathbf{v}_{\mathbf{s}} \\
\frac{Z_{2}}{Z_{1}+Z_{2}}=\frac{Z_{x}}{Z_{3}+Z_{x}} \xrightarrow{\square} Z_{2} Z_{3}=Z_{1} Z_{x} \\
Z_{x}=\frac{Z_{3}}{Z_{1}} Z_{2}
\end{gathered}
$$

AC bridge circuit

Z_{x} Unknown value necessary for balancing the bridge

AC Bridges

ÿ Unknown capacitance and inductances C_{x} and L_{x} are measured in terms of the known standard values C_{s} and L_{s}

AC Bridge for measuring L

$$
L_{x}=\frac{R_{2}}{R_{1}} L_{s}
$$

AC Bridge for measuring C.

$$
C_{x}=\frac{R_{1}}{R_{2}} C_{s}
$$

Ex.8: Determine the series components that make up Z_{x} for balancing the bridge. Assume $Z_{1}=4.8 \mathrm{k} \Omega$ resistor, Z_{2} is $\mathbf{1 0} \Omega$ in series with $0.25 \mu \mathrm{H}, \mathrm{Z}_{3}=12 \mathrm{k} \Omega$ and $\mathrm{f}=\mathbf{6} \mathbf{~ M h z}$.

Solution

$$
\begin{aligned}
\mathbf{Z}_{x} & =\left(\mathbf{Z}_{3} / \mathbf{Z}_{1}\right) \mathbf{Z}_{2} \quad \mathbf{Z}_{1}=4.8 \mathrm{k} \Omega \\
\mathbf{Z}_{3} & =12 \mathrm{k} \Omega \\
\mathbf{Z}_{2} & =10+\mathrm{j} \omega \mathrm{~L} \\
& =10+\mathrm{j}(2 \pi)\left(6 \times 10^{6}\right)\left(0.25 \times 10^{-6}\right) \\
& =10+\mathrm{j} 9.425 \mathrm{k} \Omega
\end{aligned}
$$

$Z_{\mathrm{x}}=\frac{12 \mathrm{k}}{4.8 \mathrm{k}}(10+\mathrm{j} 9.425)=25+\mathrm{j} 23.5625 \Omega$

$$
\mathrm{R}_{\mathrm{z}}=25, \quad \mathrm{X}_{\mathrm{z}}=23.5625=\omega \mathrm{L}_{\alpha}
$$

$$
L_{x}=\frac{X_{x}}{2 \pi f}=\frac{23.5625}{2 \pi\left(6 \times 10^{6}\right)}=0.625 \mu \mathrm{H}
$$

The series components are

$$
25 \Omega \text { with a } 0.625 \mu \mathcal{H}
$$

$$
\text { Resonance in } \mathcal{A C} \text { Circuits }
$$

। Resonance is a condition in an RLC circuit in which the capacitive and reactive reactance are equal in magnitude, the result is a purely resistive impedance.

। Resonance circuits are useful for constructing filters and used in many application as signal processing and communications systems .
Series Resonant Circuit

I At resonance, the impedance consists only resistive component R .
। The value of current will be maximum since the total impedance is minimum.
I The voltage and current are in phase.
I Maximum power occurs at resonance since the power factor is unity.

Series Resonant Circuit

Total impedance of series RLC Circuit is

$$
\begin{gathered}
\mathrm{Z}_{\text {Total }}=\mathrm{R}+\mathrm{j} \mathrm{X}_{\mathrm{L}}-\mathrm{j} \mathrm{X}_{\mathrm{C}} \\
\mathrm{Z}_{\text {Total }}=\mathrm{R}+\mathrm{j}\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)
\end{gathered}
$$

At Resonance:

$$
\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}
$$

The impedance now reduce to

$$
\mathrm{Z}_{\text {Total }}=\mathrm{R}
$$

The current at resonance

$$
\mathrm{I}_{\mathrm{m}}=\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{Z}_{\text {Total }}}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{R}}
$$

$$
P\left(\omega_{o}\right)=I^{2} R=\frac{V^{2}}{R}
$$

Series Resonance

Resonance Frequency

Resonance frequency is the frequency where the condition of resonance occur.

$$
\begin{gathered}
\operatorname{Im}(\mathrm{z})=0 \Longleftrightarrow \mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}} \\
\omega L=\frac{1}{\omega C} \sum \omega L-\frac{1}{\omega C}=0 \Longleftrightarrow \omega_{o} L=\frac{1}{\omega_{o} C}
\end{gathered}
$$

$\mathcal{H a l f}$-power Frequency ω_{1} \& ω_{2}
Half-power frequencies is the frequency when the magnitude of the output voltage or current is decrease by the factor of $1 / \sqrt{ } 2$ from its maximum value. Also known as cutoff frequencies.

$$
I=\frac{I}{\sqrt{2}}=0.707 I
$$

- The half-power frequencies ω_{1} and ω_{2} can be obtained by setting,

$$
\begin{gathered}
\left|Z\left(\omega_{1}\right)\right|=\left|Z\left(\omega_{2}\right)\right|=\sqrt{R^{2}+(\omega L-1 / \omega C)^{2}}=\sqrt{2} R \\
P\left(\omega_{1}\right)=P\left(\omega_{2}\right)=\frac{\left(V_{m} / \sqrt{2}\right)^{2}}{2 R}
\end{gathered}
$$

Response curve

$$
\omega_{2}=+\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}
$$

Series Resonance

Maximum Power Dissipated

The maximum current at resonance where:

$$
\mathrm{I}=\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{R}}
$$

Thus maximum power dissipated is:

$$
P=I^{2} R \quad \Longleftrightarrow \quad \text { at } \omega=\omega_{0}
$$

The average power dissipated by the RLC circuit is:

$$
\mathrm{P}=\frac{1}{2} \mathrm{I}^{2} \mathrm{R} \quad \mathrm{P}=\frac{1}{2} \frac{\mathrm{~V}_{\mathrm{m}}^{2}}{\mathrm{R}} \quad \sum \quad \text { at } \omega=\omega_{1}, \omega_{2}
$$

Series Resonance

Bandwidth of resonant circuit, β
Bandwidth, β is define as the difference between the two half power frequencies. The width of the response curve is determine by the bandwidth.

$$
B=\omega_{2}-\omega_{1}
$$

$$
\beta=\frac{R}{L}
$$

Resonance frequency can be obtained from the half-power frequencies.

$$
\omega_{o}=\sqrt{\omega_{1} \omega_{2}}
$$

Response curve
Quality Factor (Q- Factor)

Quality factor is used to measure the "sharpness" of response curve

$$
Q=2 \pi \frac{\text { Peak Energy Stored }}{\text { Energy Dissipated in one Period at Resonance }}
$$

Quality factor is the ratio of resonance frequency to the bandwidth

1 Higher value of Q, smaller the bandwidth. (Higher the selectivity)
I Lower value of Q , larger the bandwidth. (Lower the selectivity)

$$
\mathcal{H i g h}-Q
$$

It is to be a high-Q circuit when its quality factor is equal or greater than 10 .

For a high- Q circuit $(\mathrm{Q} \geqslant 10)$, the half-power frequencies are, for all practical purposes, symmetrical around the resonant frequency and can be approximated as

$$
\omega_{1} \cong \omega_{o}-\frac{\beta}{2}
$$

$$
\omega_{2} \cong \omega_{o}+\frac{\beta}{2}
$$

Ex.9: For the circuit shown:
(a) Find the resonant frequency and the half power frequencies
(b) Calculate the quality factor and bandwidth
(c) Determine the amplitude of the current at ω_{0}, ω_{1} and ω_{2}

Solution
(a) $\quad \omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{10^{-3} \times 0.4 \times 10^{-6}}}=50 \mathrm{krad} / \mathrm{s}$

$$
\omega_{1}=-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}+\frac{1}{L C}}=-\frac{2}{2 \times 10^{-3}}+\sqrt{\left(10^{3}\right)^{2}+\left(50 \times 10^{3}\right)^{2}}
$$

$\omega_{1}=-1+\sqrt{1+2500} \mathrm{krad} / \mathrm{s}=49 \mathrm{krad} / \mathrm{s} \quad \omega_{2}=1+\sqrt{1+2500} \mathrm{krad} / \mathrm{s}=51 \mathrm{krad} / \mathrm{s}$
(b) $Q=\frac{\omega_{0}}{B}=\frac{50}{2}=25 \quad B=\omega_{2}-\omega_{1}=2 \mathrm{krad} / \mathrm{s}$.
(c) At $\omega=\omega_{0}$

$$
I=\frac{V_{m}}{R}=\frac{20}{2}=10 \mathrm{~A}
$$

$\underline{\text { At } \omega=\omega_{1}, \omega_{2}}$

$$
I=\frac{V_{m}}{\sqrt{2} R}=\frac{10}{\sqrt{2}}=7.071 \mathrm{~A}
$$

Paralle L Resonant Circuit

The total admittance:

$$
\begin{aligned}
& Y_{\text {Total }}=Y_{1}+Y_{2}+Y_{3} \\
& Y_{\text {Total }}=\frac{1}{R}+\frac{1}{(j \omega L)}+\frac{1}{(-j / \omega C)} \\
& Y_{\text {Total }}=\frac{1}{R}+\frac{-j}{\omega L}+j \omega C \\
& Y_{\text {Total }}=\frac{1}{R}+j(\omega C-1 / \omega L)
\end{aligned}
$$

Resonance occur when:

$$
\omega C=\frac{1}{\omega L}
$$

I At resonance, the impedance consists only conductance G.
I The value of current will be minimum since the total admittance is minimum.
1 The voltage and current are in phase.

Parameters in Paralle [Circuit

Parallel resonant circuit has same parameters as the series resonant circuit.

Resonance frequency

$$
\omega_{\mathrm{o}}=\frac{1}{\sqrt{\mathrm{LC}}} \mathrm{rad} / \mathrm{s}
$$

Half-power frequencies

$$
\omega_{1}=\frac{-1}{2 \mathrm{RC}}+\sqrt{\left(\frac{1}{2 \mathrm{RC}}\right)^{2}+\left(\frac{1}{\mathrm{LC}}\right)} \mathrm{rad} / \mathrm{s}
$$

$$
\omega_{2}=\frac{1}{2 \mathrm{RC}}+\sqrt{\left(\frac{1}{2 \mathrm{RC}}\right)^{2}+\left(\frac{1}{\mathrm{LC}}\right)} \mathrm{rad} / \mathrm{s}
$$

For a high- Q circuit $(\mathrm{Q} \geqslant 10)$

$$
\begin{array}{ll}
\text { Bandwidth } & \beta=\omega_{2}-\omega_{1}=\frac{1}{\mathrm{RC}} \\
\text { Q - Factor } & \omega_{1} \cong \omega_{o}-\frac{\beta}{2} \\
\hline \frac{\omega_{o}}{\beta}=\omega_{o} R C=\frac{R}{\omega_{o} L} & \omega_{2} \cong \omega_{o}+\frac{\beta}{2}
\end{array}
$$

Ex.10: For the circuit shown:
(a) Calculate ω_{0}, \mathbf{Q} and B
(b) Find ω_{1} and ω_{2}
(c) Determine the power dissipated at ω_{0}, ω_{1} and ω_{2}

Solution
(a) $\quad \omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{0.2 \times 10^{-3} \times 8 \times 10^{-6}}}=\frac{10^{5}}{4}=25 \mathrm{krad} / \mathrm{s}$

$$
\begin{gathered}
Q=\frac{R}{\omega_{0} L}=\frac{8 \times 10^{3}}{25 \times 10^{3} \times 0.2 \times 10^{-3}}=1600 \\
B=\frac{\omega_{0}}{Q}=15.625 \mathrm{rad} / \mathrm{s}
\end{gathered}
$$

(b)

$$
\begin{aligned}
& \omega_{1}=\omega_{0}-\frac{B}{2}=25,000-7.812=24,992 \mathrm{rad} / \mathrm{s} \\
& \omega_{2}=\omega_{0}+\frac{B}{2}=25,000+7.8125=25,008 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

At $\omega=\omega_{0}, \mathbf{Y}=1 / R$ or $\mathbf{Z}=R=8 \mathrm{k} \Omega$.

$$
\mathbf{I}_{o}=\frac{\mathbf{V}}{\mathbf{Z}}=\frac{10 \angle-90^{\circ}}{8000}=1.25 \angle-90^{\circ} \mathrm{mA}
$$

at $\omega=\omega_{0}$

$$
P=I_{o}^{2} R=\left(1.25 \times 10^{-3}\right)^{2}(8000)=0.0125 \mathrm{~W}=12.5 \times 10^{-3} \mathrm{~W}
$$

$\underline{\text { at } \omega=\omega_{1}, \omega_{2},}$

$$
\begin{gathered}
\mathrm{P}\left(\omega_{\mathrm{o}}\right)=\frac{1}{2} \frac{\mathrm{~V}^{2}{ }_{\mathrm{m}}}{\mathrm{R}} \\
P=\frac{V^{2}}{2 R}=\frac{10^{2}}{2 \times 8000}=6.25 \times 10^{-3} \mathrm{~W}
\end{gathered}
$$

